(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(s(x), y) → f(x, g(x, y))
f(0, y) → y
g(x, y) → y

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(s(z0), z1) → f(z0, g(z0, z1))
f(0, z0) → z0
g(z0, z1) → z1
Tuples:

F(s(z0), z1) → c(F(z0, g(z0, z1)), G(z0, z1))
S tuples:

F(s(z0), z1) → c(F(z0, g(z0, z1)), G(z0, z1))
K tuples:none
Defined Rule Symbols:

f, g

Defined Pair Symbols:

F

Compound Symbols:

c

(3) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(s(z0), z1) → f(z0, g(z0, z1))
f(0, z0) → z0
g(z0, z1) → z1
Tuples:

F(s(z0), z1) → c(F(z0, g(z0, z1)))
S tuples:

F(s(z0), z1) → c(F(z0, g(z0, z1)))
K tuples:none
Defined Rule Symbols:

f, g

Defined Pair Symbols:

F

Compound Symbols:

c

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(s(z0), z1) → c(F(z0, g(z0, z1)))
We considered the (Usable) Rules:

g(z0, z1) → z1
And the Tuples:

F(s(z0), z1) → c(F(z0, g(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F(x1, x2)) = [4]x1 + [3]x2   
POL(c(x1)) = x1   
POL(g(x1, x2)) = [1] + x2   
POL(s(x1)) = [4] + x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(s(z0), z1) → f(z0, g(z0, z1))
f(0, z0) → z0
g(z0, z1) → z1
Tuples:

F(s(z0), z1) → c(F(z0, g(z0, z1)))
S tuples:none
K tuples:

F(s(z0), z1) → c(F(z0, g(z0, z1)))
Defined Rule Symbols:

f, g

Defined Pair Symbols:

F

Compound Symbols:

c

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))