(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(s(x), y) → f(x, g(x, y))
f(0, y) → y
g(x, y) → y
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(s(z0), z1) → f(z0, g(z0, z1))
f(0, z0) → z0
g(z0, z1) → z1
Tuples:
F(s(z0), z1) → c(F(z0, g(z0, z1)), G(z0, z1))
S tuples:
F(s(z0), z1) → c(F(z0, g(z0, z1)), G(z0, z1))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(s(z0), z1) → f(z0, g(z0, z1))
f(0, z0) → z0
g(z0, z1) → z1
Tuples:
F(s(z0), z1) → c(F(z0, g(z0, z1)))
S tuples:
F(s(z0), z1) → c(F(z0, g(z0, z1)))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F
Compound Symbols:
c
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(s(z0), z1) → c(F(z0, g(z0, z1)))
We considered the (Usable) Rules:
g(z0, z1) → z1
And the Tuples:
F(s(z0), z1) → c(F(z0, g(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [4]x1 + [3]x2
POL(c(x1)) = x1
POL(g(x1, x2)) = [1] + x2
POL(s(x1)) = [4] + x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(s(z0), z1) → f(z0, g(z0, z1))
f(0, z0) → z0
g(z0, z1) → z1
Tuples:
F(s(z0), z1) → c(F(z0, g(z0, z1)))
S tuples:none
K tuples:
F(s(z0), z1) → c(F(z0, g(z0, z1)))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F
Compound Symbols:
c
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))